
Analyzing Effects of Ordering Vectors in Mutation
Schemes on Performance of Differential Evolution

Sedigheh Mahdavi, Shahryar Rahnamayan, IEEE Senior Member, and Chirag Karia
Department of Electrical, Computer, and Software Engineering University of Ontario Institute of Technology, Oshawa, Canada

Email: Sedigheh.Mahdavi@uoit.ca, Shahryar.Rahnamayan@uoit.ca, chirag.karia@uoit.net

Abstract—Differential Evolution (DE) is a simple powerful
evolutionary algorithm for solving global continuous optimization
problems. The especial characteristic of DE algorithm is calculat-
ing a weighted difference vector of two random candidate solu-
tions in the population to generate the new promising candidate
solutions. A major operation of the DE algorithm is the mutation
which can affect its performance. The main goal of this study is
investigating the influence of ordering vectors on various mutation
schemes. We design some Monte-Carlo based simulations to
analyze several mutation schemes by calculating the probability
of closeness of a new trial solutions to a random optimal solution.
These simulations indicate that mutation schemes can enhance
the performance of the DE algorithm which they consider right
ordering of the vectors in their mutation operators. Also, we
introduce a new mutation scheme which considers in ordering
vectors in the mutation scheme. We benchmark the modified
DE algorithm with the ordered mutation scheme (DE/order) on
CEC-2014 test functions with three dimensions 30, 50, and 100.
Simulation results confirm that DE/order obtains a promising
performance on the majority of the test functions on all mentioned
dimensions.

I. INTRODUCTION

Global optimization problem has been arisen in many
scientific and engineering applications. A global optimization
problem can be mathematically formulated as

min f(x) (1)
s.t. x ∈ Ω (2)

Where Ω is the decision space and x is a decision vector. Many
of these global optimization problems cannot be easily solved
because they are faced with several challenging features, for
example, they can be non-linear, non-convex, multi-modal and
non-differentiable. Differential Evolution (DE) was proposed
by Storn and Price in 1995 to find the global optimum in
challenging optimization problems [1], [2]. DE is a kind of
evolutionary algorithm (EA) with an especial mutation oper-
ator which uses the difference among the candidate solutions
of the population. The main motivation of DE is designing a
new mutation strategy which creates a new trial solution by
adding a weighted difference vector of two candidate solutions
to a third candidate solution as the base vector. One cycle of a
DE algorithm executes three basic steps: mutation, crossover,
and selection. DE repeats these steps until the stopping criteria
are satisfied. A large number of modified DE algorithms have
been proposed to analyze and enhance the various steps of DE
algorithm [3], [4], such as , modifying crossover and mutation
schemes [5], [6], [7], [8], [9], [10], [11], adjusting three
control parameters, i.e., population size NP, scale factor F,

and crossover rate CR [12], [13], [14], [15], new initialization
strategy [16], [17], controlling population’s diversity [18], [19],
designing self-adaptive strategies [20], [21], etc.

For each parent candidate solution i, the basic mutation
operator (DE/rand) in the DE algorithm selects three random
candidate solutions xi1 , xi2 , and xi3 from the population
to create a mutant candidate solution as the donor solution.
The indices xi1 , xi2 , and xi3 are different from the parent
candidate solution i. Several mutation schemes of DE have
been proposed to improve its performance for solving op-
timization problems [3], [4]. There are some modifications
such as adding several weighted difference vectors to the base
vector, adding weighted difference vectors of several candidate
solutions (e.g., xi1+xi2 -xi3), and using the special candidate
solution as the base vector like the best candidate solution of
three candidate solutions. In [22], a new version of mutation
operator was proposed which sorts two first candidate solutions
in the mutation operator according to their fitness in ascending
order to set as vectors xi1 and xi2 . Also, the winner mutation
strategy [23] was introduced to identify nonlinear system
which uses the best candidate of three randomly selected
candidate solutions as the base vector in the mutation equation.
These methods attempt to investigate which candidate solution
can be a potential candidate solution to set as the base vector
in the mutation operator but they do not consider the direction
of the weighted difference vector. Also, they have not analyzed
their proposed schemes in detail.

This paper aims at analyzing the order of candidate solu-
tions to place as vectors of the mutation operator which can
affect significantly the performance of the DE algorithm. Some
simulations are designed and conducted to investigate which
arrangement of candidate solutions can generate promising
new trial candidate solutions. Also, we propose a new mutation
scheme, called the ordered mutation, which uses the ascending
order (for minimization problems) of three randomly selected
candidate solutions corresponding to their objective function
values to place as the vectors of the mutation scheme. It
considers both the direction of the weighted difference vector
and setting a potential candidate solution as the base vector.
The modified DE algorithm with the ordered mutation scheme
(DE/order) is evaluated on CEC-2014 benchmark functions on
three dimensions 30, 50, and 100. Simulation results confirm
that on the majority of the benchmark functions, the proposed
scheme performs better in overall.

The organization of the rest of the paper is as follows.
Section II presents a background review. Section III describes
the details of modified DE algorithm with the order mutation

978-1-5090-4601-0/17/$31.00 c©2017 IEEE 2290

scheme. Section IV explains conducting Monte-Carlo based
simulations. Section V presents the experimental results. Fi-
nally, the paper is concluded in Section VI.

II. BACKGROUND REVIEW

A. Differential Evolution- A Brief Description

Differential Evolution (DE) was proposed by Price and
Storn [2] in 1995. DE operates on a population including
NP randomly candidate solutions. There are two main stages,
namely, initialization and evolution. DE starts with some ran-
domly generated candidate solutions as an initial population.
DE applies two operators, mutation and crossover, to generate
new trial solutions during the evolutionary process. The variant
versions of DE was proposed according to the used schemes of
crossover and mutation which are denoted as DE/x/y/z. In this
DE/x/y/z notation, x indicates the candidate solution which is
used as a base vector to change, y is the number of difference
vectors, and z indicates the type of crossover (i.e., bin or exp).
In following, some versions of mutation and crossover schemes
are briefly described. The basic mutation, rand scheme, in
the classical DE (DE/rand/1) generates the mutant vector as
a linear combination of three selected individual candidate
solutions from the current population as follows:

vi = xi1 + F.(xi2 − xi3), (3)

where i1, i2, i3 are different random integer numbers within
[1, NP] and NP is the population size. The scaling factor F
is the real constant factor to control the difference vector. The
other three different mutation schemes, suggested by Storn and
Price [1], [2] are listed as below:

DE/rand/2 : vi = xi1 +F.(xi2 −xi3) +F.(xi4 −xi5), (4)

DE/best/1 : vi = xbest + F.(xi2 − xi3), (5)

DE/best/2 : vi = xbest +F.(xi2−xi3)+F.(xi4−xi5), (6)

Where i1-i5 are different random integer numbers within
[1, NP] and xbest is the current best candidate solution in
the population. In [22], a new scheme of mutation operator,
DE/2-Opt, was proposed which sorts two first candidate
solutions in the mutation operator according to their objective
function value in ascending order to place as xi1 and xi2 in
the mutation operator as:
‘DE/2-Opt/1’:

vi =

{
xi1 + F.(xi2 − xi3) if f(xi1) < f(xi2)

xi2 + F.(xi1 − xi3) if f(xi2) < f(xi1)
(7)

‘DE/2-Opt/2’:

vi =

{
xi1 + F.(xi2 − xi3 + xi4 − xi5) if f(xi1) < f(xi2)

xi2 + F.(xi1 − xi3 + xi4 − xi5) if f(xi2) < f(xi1)
(8)

Another scheme is the winner mutation (DE/win) [23] which
uses the best candidate of three randomly selected candidate
solutions for the base vector as follows,
‘DE/win/1’:

vi =

xi1 + F.(xi2 − xi3) if f(xi1) < f(xi2), f(xi3)

xi2 + F.(xi1 − xi3) if f(xi2) < f(xi1), f(xi3)

xi3 + F.(xi2 − xi1) if f(xi3) < f(xi2), f(xi1)
(9)

There are two crossover methods, namely, exponential and bi-
nomial. The binomial crossover operator integrates the param-
eter values of the mutant vector with some selected individual
candidate solutions of the current population to generate the
final offspring vector. In [1], [2], the binomial crossover is
defined to generate a trial vector as follows:

uz,j =

{
vz,j rand() ≤ CR or j=jrand
xz,j otherwise

(10)

where CR is the crossover rate, a constant value within the
interval [0, 1) and jrand is a random number in 1, 2, . . . , D; D
is the problem dimension. In the exponential crossover, first
an integer n is randomly selected among the numbers in [1, D]
which is the starting point for the exponential crossover. Also,
another integer L are taken from the mutant vector which is
selected by executing of the following pseudo-code:
L = 0; DO
{
L = L + 1;
} WHILE ((rand(0, 1) = CR) AND (L = D)). Then, the trial
vector is calculated as:

uz,j =

{
vz,j for j = 〈n〉D, 〈n + 1〉D, . . . , 〈n + L− 1〉D
xz,j otherwise

(11)
Where the angular brackets 〈〉D denotes a modulo function
with modulus D. After that, DE selects the better one between
xi and ui according to their fitness values for the next
generation (i.e., greedy selection).

III. A MODIFIED DE ALGORITHM WITH THE ORDERED
MUTATION SCHEME

Through several research works on the DE algorithms [3],
[4], it has been observed that the performance of DE can be
influenced by modifying the mutation scheme. Therefore, the
mutation scheme and its corresponding direction information
are beneficial to guide the search in the DE algorithm. DE
selects three different random candidate solutions (xi1 , xi2 ,
and xi3) from the current population to generate new candidate
trial solutions during the mutation step. In this section, we
propose a modified DE algorithm with the order mutation
scheme which uses the objective function of three different
random candidate solutions to arrange order of vectors in
mutation scheme. In DE/order/1, first, three selected random
solutions are sorted in ascending order according to their
fitness values for placing as vectors (xi1 , xi2 , and xi3) in the
mutation. The sorted candidate solutions can be called as the
best, the second best, the worst candidate solutions. Then,
the best, the second best, and the worst candidate solutions
are considered as solutions xi1, xi2 , and xi3 in the mutation
vi = xi1 + F.(xi2 − xi3).
‘DE/order/1’:

vi = xi1 + F.(xi2 − xi3) (12)
s.t f(xi1) < f(xi2) < f(xi3) (13)

Where f(x) indicates the objective function for the value of
solution x.

The main modification of this mutation is placing the
best candidate solution of three candidate solutions as the

2291

base vector and selecting two other candidate solutions as the
potential candidate solutions in the computing of the difference
vector in the mutation operator in ordered. In DE/best/1, as
we mentioned in the section II-A, the current best solution
of the population is placed as the base vector to explore
more promising regions but it can be trapped in local optimal
solution because of using the current best solution to generate
all new trial solutions. In the proposed DE/order/1, the best of
three selected candidate solution are used as the base vector
which was proposed in [23] to modify DE for nonlinear
system identification. Placing the best candidate solutions of
three selected ones as the base vector instead of the current
best solution in the population causes to generate the various
solutions located in the different regions of the search space
which would not be prone for premature convergence similar
to the previous case. Therefore, it can avoid trapping in local
optimal solution. We suggest putting the worse candidate
solution of three candidate solutions as third vector in the
mutation which causes that the new trial candidate solution
to get away from the worse candidate solution and move
forward toward the second best candidate solution. It means
that after selecting three candidate solutions randomly from the
population, we use the sorting order of three random selected
solutions to place as vectors corresponding to their ascending
sorting of their fitness.

Fig. 1 demonstrate an example to indicate the behavior
of the proposed mutation scheme. It includes three candidate
solutions x1, x2, and x3 and the optimal solution. As we can
see that the direction of the difference vector (x2 − x3) is
toward the candidate solution x2 which causes to go away from
the worst candidate solution. Then, by adding the difference
vector (x2−x3) to the best candidate solution x1 the new point
V is generated. To see the difference between two directions of
difference vector, it can be seen that by adding the difference
vector (x3−x2) to x1, it reaches the new point V1 which is far
away from the optimal solution and moves toward the worst
solution. This mutation scheme is very simple and it does not
need any extra computation because the complexity of sorting
three candidate solution is constant. Also, it keeps all other
steps of DE algorithms untouched.

X2

X1

X3

The difference vector
X2- X3

The scaled difference vector
F.(X2- X3)

V=X1+F.(X2- X3)

V1=X1+F.(X3- X2)

The optimal solution

Fig. 1: Illustrating a sample behavior of DE/order/1 in 2-D space.

(a) DE/1/exp (b) DE/2/exp

(c) DE/1/bin (d) DE/2/bin

Fig. 2: The probability of closeness for DE/order and DE/rand mu-
tation schemes for the exponential and binomial crossover operators
with CR = 0.9 and F = 0.5

A. Analyzing mutation schemes of DE by Monte-Carlo based
Simulations

In order to further analyzing the effect of ordering vectors
in the mutation schemes, we demonstrate the behaviour of
some mutation schemes in the DE algorithm by implementing
a series of simulations. Monte-Carlo simulations are applied
to calculate the probability of closeness (to a randomly gen-
erated solution) of new candidate trial solutions obtained by
some mutation schemes. The simulations run for 104 times, a
solution is generated uniform randomly as an optimal solution
and some candidate solutions (i.e., three or more depending
on the mutation scheme under study) are generated uniform
randomly. Also, in these simulations it is supposed that the
Euclidean distances of each candidate solution is consider as
its objective function value (closer to solution has better fitness
value). Each trial of these simulations has following steps:

1) An optimal solution and several candidate solutions
are generated uniform randomly.

2) The Euclidean distances of all candidate solutions to
the optimal solution are computed as the objective
function values of candidate solutions which are used
to sort the candidate solutions in some mutation
schemes.

3) One candidate solution is randomly selected as the
parent solution.

4) The new trial candidate solutions are calculated by
using the different schemes of mutation and crossover
operators.

2292

5) The Euclidean distances of new trial candidate solu-
tions to the optimal solution are computed to deter-
mine the best mutation scheme which can generate a
better new trial candidate solution; closer to the the
optimal solution.

(a) DE/1/exp (b) DE/2/exp

(c) DE/1/bin (d) DE/2/bin

Fig. 3: The probability of closeness for DE/order, DE/win, and
DE/rand mutation schemes for the exponential and binomial crossover
operators with CR = 0.9 and F = 0.5

The closeness (to solution) probability of a mutation scheme
is computed as the number of trials which it can generate
the better (i.e., closer) trial candidate solution divided by
the number of total trials. Note that in these simulations,
we generate new trial candidate solutions in each iteration
by performing the different mutation schemes in order to
recognize which mutation scheme can generate the better
trial candidate solutions. These simulations run on various
dimensions from 1D to 1000D. The simulations consider
four schemes DE/win, DE/rand, DE/2-opt and our proposed
mutation scheme, i.e., DE/order. Two parameters CR and F
are set to 0.9 and 0.5, respectively. Also, the winner mutation
(DE/win) can be extended for using DE with two difference
vectors as follows:
‘DE/win/2’:

vi =

xi1 + F.(xi2 − xi3 + xi4 − xi5) iff(xi1) < f(xi2), f(xi3)

xi2 + F.(xi1 − xi3 + xi4 − xi5) iff(xi2) < f(xi1), f(xi3)

xi3 + F.(xi2 − xi1 + xi4 − xi5) iff(xi3) < f(xi1), f(xi2)
(14)

DE/order is also extended for DE with two difference vectors
as follows:
‘DE/order/2’:

vi = xi1 + F.(xi2 − xi3) + F.(xi4 − xi5) (15)
s.t f(xi1) < f(xi2) < f(xi3) < f(xi4) < f(xi5) (16)

Fig. 2 indicates the closeness probability of DE/order and
DE/rand mutation schemes with the exponential and bino-
mial crossover operators. As we can see, in the exponen-
tial crossover, DE/order has higher probability than DE/rand
especially when dimension is less than 200. By increasing
dimension, the probability of DE/order is decreased but it is
still higher than DE/rand. Also, the probability of DE/rand
is increased as the dimension increases. For the binomial
crossover, DE/order has higher probability than DE/rand and
this behaviour is constant as the dimension increases. Fig.
3 indicates the closeness probability of DE/order, DE/win,
and DE/rand mutation schemes with the exponential and
binomial crossover operators. As we can see, in the exponen-
tial crossover, DE/order and DE/win mutation schemes has
higher probability than DE/rand especially when dimension is
less than 200. Also, by increasing dimension, the probability
of DE/rand is increased while the closeness probability of
two other mutation schemes is decreased. For the binomial
crossover, DE/order and DE/win mutation schemes have higher
probability than DE/rand and this behaviour is constant for
higher dimensions.

Fig. 4 indicates the closeness probability of DE/order,
DE/2-opt, and DE/rand mutation schemes with the exponential
and binomial crossover operators. As we can see that in
the exponential crossover, DE/order has higher probability
than DE/rand and DE/win mutation schemes especially when
dimension is less than 200. Also, by increasing dimension,
the probability of DE/rand and DE/win mutation schemes are
increased while the closeness probability of two other mutation
schemes are decreased. For the binomial crossover, DE/order
and DE/2-opt mutation schemes have higher probability than
DE/rand mutation scheme which there is a significant dif-
ference between the closeness probability of DE/order (ap-
proximately 0.2) and DE/2-opt (approximately 0.6) mutation
schemes.

Fig. 5 indicates the closeness probability of DE/order,
DE/2-opt, DE/win and DE/rand mutation schemes with the
exponential and binomial crossover operators. It indicates that
in the exponential crossover, three mutation schemes DE/order,
DE/2-opt, and DE/win has higher probability than DE/rand.
As we can see in Fig. 5 that the behaviour of DE/order and
DE/win mutation schemes are similar, increasing curve; while
DE/rand and DE/2-opt mutation schemes have the decreas-
ing curve. For the binomial crossover, DE/order, DE/2-opt,
and DE/win mutation schemes have higher probability than
DE/rand mutation scheme while the closeness probability of
DE/order and DE/win mutation schemes are values greater
than 0.3 and 0.4; respectively. Monte carlo simulations confirm
that when mutation schemes consider order candidate solutions
to place as vectors in the mutation, they can generate better
new trial solutions than the random scheme.

IV. EXPERIMENTAL RESULTS

A. Setup of Experiments

To study the performance of the modified DE algorithm
with the order mutation scheme (DE/order), we compare

2293

(a) DE/1/exp (b) DE/2/exp

(c) DE/1/bin (d) DE/2/bin

Fig. 4: The probability of closeness for DE/order, DE/2-opt, and
DE/rand mutation schemes for the exponential and binomial crossover
operators with CR = 0.9 and F = 0.5

DE/order against DE/rand and DE/2-Opt. Two crossover
schemes, exponential and binomial, were tested for the DE
algorithm. The experiment was performed on 30 benchmark
functions with 30, 50, and 100 dimensions. Algorithms were
evaluated for 51 independent runs and and the results were
recorded. In this study, the maximum number of evaluations
was set to 1000 ×D and the population size was set to 100.
A two-sided Wilcoxon statistical test with a confidence level
of 95% is performed between compared algorithms. Symbols
$, # and ∗ denote the compared algorithms are better than,
worse than, or similar to DE/order, respectively. ‘w/t/l ’in the
last row in tables means that DE/order wins in w functions,
ties in t functions, and loses in l functions, compared with the
compared algorithms.

B. Numerical Results

The mean and the standard deviation of the obtained
error values by three algorithms with dimensions 30, 50, and
100 are summarized in the Tables I-III, respectively. Table I
indicates the results of algorithms for D=30. From Table I,
it can be seen that with the binomial mutation, DE/order/bin
performs better than DE/rand/bin and DE/2-Opt/bin on 21 (f1-
f4, f6-f10,f15,f17-f22, f24-f25, f27-f28, f30) and 18 (f1-f4,f6-
f10,f17-f19, f21 , f24-f25, f27-f28, f30), respectively. Also,
DE/2-Opt/bin can achieve the better result on one function
f29. The DE/rand/bin and DE/2-Opt/bin perform similar to
DE/order/bin on 9 and 10 other functions, respectively. It is ob-
vious from Table I, for the exponential mutation, DE/order/exp
achieves better results than DE/rand/exp and DE/2-Opt/exp

on 21 (f1-f4,f6-f10,f15,f17,f20-f22, f24-f25, f27-f30) and
19 (f1-f4, f6-f10,f15,f17-f21, f24-f25, f27-f28), respectively.
DE/order/exp cannot achieve better results than DE/2-Opt/exp
on only one function (f29). In addition, The DE/rand/exp and
DE/2-Opt/exp perform similar to DE/order/exp on 9 and 10
other functions, respectively.

The results of algorithms for D=50 are summarized in
Table II. It is obvious from Table II that for the binomial
mutation, DE/order/bin algorithm outperforms DE/rand/bin
and DE/2-Opt/bin on 17 (f1-f4, f6-f10,f15,f17, f20-f21, f25,
f27-f28, f30) and 16 (f1-f2,f4,f6,f10-f11,f17-f18, f20 − f22,
f25, f27-f30), respectively. DE/order/bin cannot achieve better
results than DE/2-Opt/bin on only one function (f26). In
addition, The DE/rand/bin and DE/2-Opt/bin perform similar
to DE/order/exp on 13 other functions. From Table II, it
can be seen that with the exponential mutation, DE/order/exp
performs better than DE/rand/exp and DE/2-Opt/exp on 23 (f1-
f4, f6-f11,f15,f17-f21, f24-f30) and 17 (f1-f4,f6,f11,f15,f17-
f21, f25, f27-f30), respectively. Also, DE/2-Opt/exp archives
the better result on one function f23. The DE/rand/exp and
DE/2-Opt/exp perform similar to DE/order/exp on 7 and 12
other functions, respectively.

(a) DE/1/exp (b) DE/2/exp

(c) DE/1/bin (d) DE/2/bin

Fig. 5: The probability of closeness for DE/order, DE/2-opt, DE/win,
and DE/rand mutation schemes for the exponential and binomial
crossover operators with CR = 0.9 and F = 0.5

Table III indicates the results of algorithms for D=100.
From Table III, it can be seen that with the binomial mutation,
DE/order/bin performs better than DE/rand/bin and DE/2-
Opt/bin on 18 (f1-f4, f6-f8,f10,f15,f17,f20-f22, f25, f27-
f30) and 12 (f1-f2,f4,f6-f7,f10,f17,f20-f21 , f25, f28, f30),
respectively. Also, DE/2-Opt/bin can achieve the better result

2294

TABLE I: Results of DE/order,DE/rand, and DE/2-Opt algorithms on the CEC-2014 benchmark functions with D=30.

Functions DE/rand/bin DE/2-Opt/bin DE/order/bin DE/rand/exp DE/2-Opt/exp DE/order/exp

f1
Mean 2.223e+07$ 8.379e+06$ 3.904e+06 2.305e+07$ 8.968e+06$ 3.774e+06
STD 7.018e+06 2.289e+06 1.626e+06 7.450e+06 3.265e+06 1.371e+06

f2
Mean 3.070e+07$ 9.948e+05$ 4.988e+04 2.997e+07$ 9.434e+05$ 5.670e+04
STD 1.064e+07 4.245e+05 1.986e+04 9.161e+06 4.355e+05 2.644e+04

f3
Mean 5.654e+02$ 3.155e+02$ 3.017e+02 5.020e+02$ 3.106e+02$ 3.008e+02
STD 9.294e+01 6.059e+00 1.461e+00 5.584e+01 4.942e+00 4.331e-01

f4
Mean 5.450e+02$ 5.143e+02$ 4.892e+02 5.466e+02$ 5.112e+02$ 4.951e+02
STD 1.035e+01 1.740e+01 1.636e+01 1.235e+01 1.337e+01 1.967e+01

f5
Mean 5.210e+02# 5.210e+02# 5.210e+02 5.210e+02# 5.210e+02# 5.210e+02
STD 6.116e-02 4.701e-02 5.538e-02 4.510e-02 5.259e-02 6.179e-02

f06
Mean 6.330e+02$ 6.232e+02$ 6.139e+02 6.313e+02$ 6.256e+02$ 6.135e+02
STD 4.924e+00 7.807e+00 5.752e+00 5.099e+00 7.572e+00 5.582e+00

f7
Mean 7.012e+02$ 7.007e+02$ 7.001e+02 7.012e+02$ 7.007e+02$ 7.001e+02
STD 6.094e-02 1.312e-01 6.390e-02 6.997e-02 1.287e-01 7.356e-02

f8
Mean 1.002e+03$ 9.970e+02$ 9.888e+02 1.003e+03$ 9.959e+02# 9.910e+02
STD 1.352e+01 1.055e+01 1.123e+01 1.110e+01 1.107e+01 1.202e+01

f9
Mean 1.124e+03$ 1.117e+03$ 1.112e+03 1.126e+03$ 1.117e+03$ 1.110e+03
STD 1.143e+01 1.048e+01 1.103e+01 1.211e+01 1.219e+01 1.144e+01

f10
Mean 7.165e+03$ 7.040e+03$ 6.750e+03 7.181e+03$ 7.069e+03$ 6.799e+03
STD 3.607e+02 2.994e+02 4.748e+02 3.659e+02 3.308e+02 4.728e+02

f11
Mean 8.668e+03# 8.526e+03# 8.609e+03 8.606e+03# 8.607e+03# 8.506e+03
STD 2.479e+02 3.185e+02 2.843e+02 3.298e+02 2.871e+02 3.611e+02

f12
Mean 1.203e+03# 1.203e+03# 1.203e+03 1.203e+03# 1.203e+03# 1.203e+03
STD 3.445e-01 3.012e-01 3.916e-01 4.446e-01 4.062e-01 3.040e-01

f13
Mean 1.301e+03# 1.301e+03# 1.301e+03 1.301e+03# 1.301e+03# 1.301e+03
STD 7.427e-02 7.272e-02 7.793e-02 7.800e-02 6.527e-02 7.458e-02

f14
Mean 1.400e+03# 1.400e+03# 1.400e+03 1.400e+03# 1.400e+03# 1.400e+03
STD 8.235e-02 9.617e-02 1.955e-01 9.141e-02 4.650e-02 1.843e-01

f15
Mean 1.522e+03$ 1.519e+03# 1.519e+03 1.522e+03$ 1.520e+03$ 1.519e+03
STD 1.548e+00 1.176e+00 1.263e+00 1.200e+00 1.137e+00 1.049e+00

f16
Mean 1.613e+03# 1.613e+03# 1.613e+03 1.613e+03# 1.613e+03# 1.613e+03
STD 1.852e-01 1.942e-01 2.064e-01 1.770e-01 1.488e-01 1.831e-01

f17
Mean 1.983e+04$ 5.576e+03$ 4.461e+03 4.847e+04$ 7.270e+03$ 5.121e+03
STD 9.899e+03 7.349e+02 4.119e+02 2.493e+04 1.261e+03 7.920e+02

f18
Mean 2.616e+03$ 1.962e+03$ 1.936e+03 2.246e+03# 1.934e+03$ 1.921e+03
STD 2.480e+02 1.821e+01 3.233e+01 1.080e+02 1.768e+01 2.904e+01

f19
Mean 1.912e+03$ 1.908e+03$ 1.907e+03 1.912e+03# 1.908e+03$ 1.907e+03
STD 1.551e+00 1.265e+00 8.773e-01 1.577e+00 1.335e+00 1.051e+00

f20
Mean 2.095e+03$ 2.068e+03# 2.066e+03 2.087e+03$ 2.068e+03$ 2.061e+03
STD 1.357e+01 8.630e+00 1.019e+01 9.359e+00 8.934e+00 1.041e+01

f21
Mean 4.177e+03$ 3.692e+03$ 3.562e+03 4.087e+03$ 3.616e+03$ 3.532e+03
STD 2.720e+02 1.726e+02 1.846e+02 2.806e+02 2.231e+02 1.761e+02

f22
Mean 2.830e+03$ 2.774e+03# 2.736e+03 2.836e+03$ 2.776e+03# 2.693e+03
STD 1.333e+02 1.439e+02 1.426e+02 1.199e+02 1.122e+02 1.835e+02

f23
Mean 2.616e+03# 2.615e+03# 2.615e+03 2.616e+03# 2.615e+03# 2.615e+03
STD 1.189e-01 8.777e-03 7.592e-04 1.613e-01 1.219e-02 1.243e-03

f24
Mean 2.637e+03$ 2.628e+03$ 2.627e+03 2.636e+03$ 2.628e+03$ 2.627e+03
STD 3.601e+00 2.236e+00 3.682e+00 3.235e+00 2.250e+00 4.537e+00

f25
Mean 2.712e+03$ 2.708e+03$ 2.705e+03 2.711e+03$ 2.707e+03$ 2.705e+03
STD 1.782e+00 1.529e+00 9.039e-01 1.944e+00 1.797e+00 9.852e-01

f26
Mean 2.701e+03# 2.701e+03# 2.701e+03 2.701e+03# 2.701e+03# 2.701e+03
STD 8.315e-02 6.167e-02 7.035e-02 6.498e-02 7.705e-02 7.302e-02

f27
Mean 3.444e+03$ 3.249e+03$ 3.164e+03 3.491e+03$ 3.254e+03$ 3.151e+03
STD 1.341e+02 1.065e+02 6.616e+01 1.191e+02 1.121e+02 6.189e+01

f28
Mean 3.819e+03$ 3.740e+03$ 3.670e+03 3.812e+03$ 3.761e+03$ 3.654e+03
STD 3.847e+01 6.486e+01 5.015e+01 4.854e+01 5.936e+01 4.819e+01

f29
Mean 1.773e+05# 4.992e+05∗ 5.033e+05 5.460e+05$ 1.798e+05∗ 3.385e+05
STD 1.214e+06 1.996e+06 2.016e+06 2.182e+06 1.249e+06 1.671e+06

f30
Mean 7.778e+03$ 6.217e+03$ 5.939e+03 7.507e+03$ 5.869e+03# 6.500e+03
STD 2.489e+03 1.321e+03 2.892e+03 4.740e+03 8.506e+02 5.290e+03
w/t/l 21/9/0 18/11/1 - 20/10/0 19/10/1 -

on 4 functions; f8,f19,f24, and f29. The DE/rand/bin and
DE/2-Opt/bin perform similar to DE/order/bin on 12 and
14 other functions, respectively. For the exponential muta-
tion, it is obvious from Table III, DE/order/exp achieves
better results than DE/rand/exp and DE/2-Opt/exp on 16
(f1-f4, f6-f8,f10,f15,f17,f20-f21, f25, f27-f28, f30) and 14
(f1-f4, f6-f7,f10,f17,f20-f21, f22-f25, f29-f30), respectively.
DE/rand/exp and DE/2-Opt/exp can obtain better results than

DE/order/exp on one function f29 and 2 functions (f19 and
f27), respectively. In addition, the DE/rand/exp and DE/2-
Opt/exp perform similar to DE/order/exp on 13 and 14 other
functions, respectively.

2295

V. CONCLUSION REMARKS AND FUTURE DIRECTIONS

In this paper, mutation schemes DE/rand, DE/win, DE/2-
Opt, and DE/order were analyzed to study the effect of order-
ing vectors in the mutation scheme by monte carlo simulations.
In each iteration of monte carlo simulations, they generate
a random solution as the optimal solution and also some
other random solutions as the candidate solutions for calcu-
lating mutation schemes. Then, the closeness probability of
new generated trial candidate solutions for mutation schemes
are computed. Monte carlo simulations have shown that all
mutation schemes with considering an ordering vectors in the
mutation scheme (placing the solutions with the better fitness
as base vector or using a full order of candidate solutions
according to their fitness for vectors in mutation scheme)
can perform better than the random mutation (DE/rand). In
addition, we proposed the modified DE algorithm with the
order mutation scheme (DE/order)which is evaluated on CEC-
2014 benchmark functions with three dimensions; 30, 50, and
100. In future, we are planning to analyze other versions of
mutation schemes by monte carlo simulations. In addition, we
are interested in analyzing the impact of each mutation scheme
on the performance of DE.

REFERENCES

[1] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
global optimization, vol. 11, no. 4, pp. 341–359, 1997.

[2] R. Storn and K. Price, Differential evolution–a simple and efficient
adaptive scheme for global optimization over continuous spaces. ICSI
Berkeley, 1995, vol. 3.

[3] S. Das and P. N. Suganthan, “Differential evolution: A survey of
the state-of-the-art,” IEEE transactions on evolutionary computation,
vol. 15, no. 1, pp. 4–31, 2011.

[4] S. Das, S. S. Mullick, and P. N. Suganthan, “Recent advances in
differential evolution–an updated survey,” Swarm and Evolutionary
Computation, vol. 27, pp. 1–30, 2016.

[5] H.-Y. Fan and J. Lampinen, “A trigonometric mutation operation to
differential evolution,” Journal of global optimization, vol. 27, no. 1,
pp. 105–129, 2003.

[6] S. Das, A. Abraham, U. K. Chakraborty, and A. Konar, “Differential
evolution using a neighborhood-based mutation operator,” IEEE Trans-
actions on Evolutionary Computation, vol. 13, no. 3, pp. 526–553, 2009.

[7] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution
algorithm with strategy adaptation for global numerical optimization,”
IEEE transactions on Evolutionary Computation, vol. 13, no. 2, pp.
398–417, 2009.

[8] J. Zhang and A. C. Sanderson, “Jade: adaptive differential evolution
with optional external archive,” IEEE transactions on evolutionary
computation, vol. 13, no. 5, pp. 945–958, 2009.

[9] J. Teo, “Exploring dynamic self-adaptive populations in differential
evolution,” Soft Computing, vol. 10, no. 8, pp. 673–686, 2006.

[10] A. Zamuda and J. Brest, “Self-adaptive control parameters? randomiza-
tion frequency and propagations in differential evolution,” Swarm and
Evolutionary Computation, vol. 25, pp. 72–99, 2015.

[11] F. Campelo and M. Botelho, “Experimental investigation of recombi-
nation operators for differential evolution,” in Proceedings of the 2016
on Genetic and Evolutionary Computation Conference. ACM, 2016,
pp. 221–228.

[12] M. Weber, V. Tirronen, and F. Neri, “Scale factor inheritance mechanism
in distributed differential evolution,” Soft Computing, vol. 14, no. 11,
pp. 1187–1207, 2010.

[13] R. Mallipeddi, “Harmony search based parameter ensemble adaptation
for differential evolution,” Journal of Applied Mathematics, vol. 2013,
2013.

[14] S. Das, A. Konar, and U. K. Chakraborty, “Two improved differential
evolution schemes for faster global search,” in Proceedings of the 7th
annual conference on Genetic and evolutionary computation. ACM,
2005, pp. 991–998.

[15] R. Tanabe and A. Fukunaga, “How far are we from an optimal, adaptive
de?” in International Conference on Parallel Problem Solving from
Nature. Springer, 2016, pp. 145–155.

[16] S. Rahnamayan, H. R. Tizhoosh, and M. M. Salama, “Opposition-based
differential evolution,” IEEE Transactions on Evolutionary computation,
vol. 12, no. 1, pp. 64–79, 2008.

[17] A. Esmailzadeh and S. Rahnamayan, “Enhanced differential evolution
using center-based sampling,” in 2011 IEEE Congress of Evolutionary
Computation (CEC). IEEE, 2011, pp. 2641–2648.

[18] M. Yang, C. Li, Z. Cai, and J. Guan, “Differential evolution with
auto-enhanced population diversity,” IEEE transactions on cybernetics,
vol. 45, no. 2, pp. 302–315, 2015.

[19] J.-H. Zhong, M. Shen, J. Zhang, H. S.-H. Chung, Y.-H. Shi, and Y. Li,
“A differential evolution algorithm with dual populations for solving
periodic railway timetable scheduling problem,” IEEE Transactions on
Evolutionary Computation, vol. 17, no. 4, pp. 512–527, 2013.

[20] S. Biswas, S. Kundu, S. Das, and A. V. Vasilakos, “Teaching and learn-
ing best differential evoltuion with self adaptation for real parameter
optimization,” in 2013 IEEE Congress on Evolutionary Computation.
IEEE, 2013, pp. 1115–1122.

[21] A. K. Qin and P. N. Suganthan, “Self-adaptive differential evolution
algorithm for numerical optimization,” in 2005 IEEE congress on
evolutionary computation, vol. 2. IEEE, 2005, pp. 1785–1791.

[22] C.-W. Chiang, W.-P. Lee, and J.-S. Heh, “A 2-opt based differential
evolution for global optimization,” Applied Soft Computing, vol. 10,
no. 4, pp. 1200–1207, 2010.

[23] M.-F. Yeh, H.-C. Lu, T.-H. Chen, and P.-J. Huang, “System identi-
fication using differential evolution with winner mutation strategy,”
in Machine Learning and Cybernetics (ICMLC), 2014 International
Conference on, vol. 1. IEEE, 2014, pp. 77–81.

2296

TABLE II: Results of DE/order,DE/rand, and DE/2-Opt algorithms on the CEC-2014 benchmark functions with D=50.

Functions DE/rand/bin DE/2-Opt/bin DE/order/bin DE/rand/exp DE/2-Opt/exp DE/order/exp

f1
Mean 9.823e+07$ 4.303e+07$ 2.079e+07 8.649e+07$ 3.408e+07$ 1.740e+07
STD 2.459e+07 1.271e+07 7.515e+06 1.767e+07 8.780e+06 7.826e+06

f2
Mean 3.004e+07$ 5.012e+05$ 1.895e+04 2.797e+07$ 4.390e+05$ 2.164e+04
STD 8.724e+06 2.176e+05 8.907e+03 9.538e+06 2.565e+05 1.149e+04

f3
Mean 5.425e+03$ 2.383e+03# 2.135e+03 6.947e+03$ 3.932e+03$ 3.376e+03
STD 1.311e+03 1.025e+03 1.273e+03 1.934e+03 1.559e+03 1.998e+03

f4
Mean 5.235e+02$ 5.004e+02$ 4.994e+02 5.241e+02$ 5.048e+02$ 4.982e+02
STD 1.076e+01 4.186e+00 5.157e+00 1.400e+01 1.679e+01 2.466e+00

f5
Mean 5.212e+02# 5.212e+02# 5.212e+02 5.212e+02# 5.212e+02# 5.212e+02
STD 4.356e-02 4.665e-02 4.654e-02 3.025e-02 3.521e-02 2.819e-02

f6
Mean 6.491e+02$ 6.331e+02$ 6.198e+02 6.505e+02$ 6.307e+02$ 6.206e+02
STD 9.879e+00 1.135e+01 6.984e+00 1.052e+01 1.048e+01 7.656e+00

f7
Mean 7.012e+02$ 7.005e+02# 7.000e+02 7.012e+02$ 7.005e+02# 7.000e+02
STD 8.701e-02 1.396e-01 1.952e-02 7.857e-02 1.323e-01 2.054e-02

f8
Mean 1.190e+03$ 1.178e+03# 1.176e+03 1.185e+03$ 1.177e+03# 1.174e+03
STD 1.611e+01 1.918e+01 1.305e+01 1.372e+01 1.569e+01 1.733e+01

f9
Mean 1.316e+03$ 1.305e+03# 1.300e+03 1.314e+03$ 1.299e+03# 1.298e+03
STD 1.766e+01 1.835e+01 1.821e+01 1.917e+01 1.956e+01 1.304e+01

f10
Mean 1.344e+04$ 1.339e+04$ 1.307e+04 1.361e+04$ 1.328e+04# 1.310e+04
STD 3.303e+02 4.236e+02 5.282e+02 4.237e+02 5.379e+02 5.273e+02

f11
Mean 1.504e+04# 1.507e+04$ 1.491e+04 1.509e+04$ 1.512e+04$ 1.480e+04
STD 4.336e+02 4.058e+02 4.632e+02 3.836e+02 3.557e+02 5.362e+02

f12
Mean 1.204e+03# 1.204e+03# 1.204e+03 1.204e+03# 1.204e+03# 1.204e+03
STD 3.488e-01 3.511e-01 3.424e-01 3.526e-01 3.691e-01 4.002e-01

f13
Mean 1.301e+03# 1.301e+03# 1.301e+03 1.301e+03# 1.301e+03# 1.301e+03
STD 7.170e-02 7.219e-02 7.445e-02 7.784e-02 7.711e-02 7.765e-02

f14
Mean 1.401e+03# 1.401e+03# 1.401e+03 1.401e+03# 1.400e+03# 1.401e+03
STD 2.143e-01 2.326e-01 2.295e-01 1.942e-01 2.110e-01 2.431e-01

f15
Mean 1.539e+03$ 1.537e+03# 1.536e+03 1.539e+03$ 1.537e+03$ 1.536e+03
STD 2.245e+00 1.641e+00 1.844e+00 1.904e+00 1.673e+00 1.712e+00

f16
Mean 1.623e+03# 1.623e+03# 1.623e+03 1.623e+03# 1.623e+03∗ 1.623e+03
STD 1.977e-01 1.998e-01 2.359e-01 1.951e-01 1.744e-01 2.064e-01

f17
Mean 7.434e+05$ 2.281e+05$ 1.332e+05 1.305e+06$ 3.607e+05$ 2.597e+05
STD 3.147e+05 1.608e+05 1.614e+05 3.930e+05 2.039e+05 2.808e+05

f18
Mean 1.281e+04# 2.880e+03$ 2.565e+03 1.674e+04$ 3.099e+03$ 2.779e+03
STD 5.444e+03 5.554e+02 1.059e+03 8.394e+03 5.664e+02 1.101e+03

f19
Mean 1.924e+03# 1.916e+03# 1.916e+03 1.925e+03$ 1.919e+03$ 1.916e+03
STD 4.115e+00 2.495e+00 6.926e+00 6.403e+00 6.959e+00 2.735e+00

f20
Mean 2.546e+03$ 2.320e+03$ 2.190e+03 2.782e+03$ 2.379e+03$ 2.251e+03
STD 2.055e+02 3.649e+02 4.583e+01 4.511e+02 2.428e+02 6.422e+01

f21
Mean 4.000e+04$ 1.512e+04$ 1.018e+04 4.585e+04$ 2.244e+04$ 1.113e+04
STD 1.935e+04 1.595e+04 6.537e+03 2.182e+04 2.393e+04 1.056e+04

f22
Mean 3.870e+03# 3.898e+03$ 3.826e+03 3.897e+03# 3.866e+03# 3.842e+03
STD 1.629e+02 1.644e+02 1.538e+02 1.801e+02 1.499e+02 1.723e+02

f23
Mean 2.644e+03# 2.644e+03# 2.644e+03 2.644e+03# 2.644e+03∗ 2.644e+03
STD 7.842e-02 2.944e-03 1.094e-03 6.871e-02 3.409e-03 2.624e-04

f24
Mean 2.682e+03# 2.672e+03# 2.673e+03 2.682e+03$ 2.672e+03# 2.673e+03
STD 3.324e+00 1.870e+00 2.555e+00 2.849e+00 2.024e+00 2.687e+00

f25
Mean 2.732e+03$ 2.720e+03$ 2.711e+03 2.733e+03$ 2.719e+03$ 2.711e+03
STD 6.646e+00 3.952e+00 2.389e+00 6.286e+00 3.782e+00 2.380e+00

f26
Mean 2.701e+03# 2.710e+03∗ 2.736e+03 2.711e+03$ 2.705e+03# 2.707e+03
STD 6.156e-02 4.494e+01 8.089e+01 5.260e+01 3.266e+01 3.598e+01

f27
Mean 4.067e+03$ 3.593e+03$ 3.377e+03 4.072e+03$ 3.572e+03$ 3.397e+03
STD 2.476e+02 1.955e+02 1.121e+02 2.172e+02 2.170e+02 1.150e+02

f28
Mean 4.247e+03$ 4.096e+03$ 4.004e+03 4.286e+03$ 4.120e+03$ 4.028e+03
STD 1.174e+02 1.039e+02 1.443e+02 8.819e+01 1.202e+02 8.337e+01

f29
Mean 2.115e+07# 2.410e+07$ 1.832e+07 2.111e+07$ 2.092e+07$ 1.509e+07
STD 1.855e+07 1.998e+07 2.061e+07 1.945e+07 2.203e+07 1.987e+07

f30
Mean 1.711e+04$ 1.328e+04$ 1.219e+04 1.718e+04$ 1.303e+04$ 1.219e+04
STD 1.963e+03 9.0589e+02 1.565e+03 1.773e+03 9.698e+02 7.516e+02
w/t/l 17/13/0 16/14/1 - 23/7/0 17/12/1 -

2297

TABLE III: Results of DE/order,DE/rand, and DE/2-Opt algorithms on the CEC-2014 benchmark functions with D=100.

Functions DE/rand/bin DE/2-Opt/bin DE/order/bin DE/rand/exp DE/2-Opt/exp DE/order/exp

f1
Mean 5.01e+08$ 1.543e+08$ 7.365e+07 3.389e+08$ 1.122e+08$ 6.098e+07
STD 1.29e+08 4.260e+07 2.227e+07 9.244e+07 3.762e+07 2.053e+07

f2
Mean 2.18e+07$ 4.516e+05$ 3.421e+04 3.409e+07$ 1.131e+06$ 5.628e+04
STD 6.71e+06 1.571e+05 2.501e+04 1.315e+07 8.312e+05 3.161e+04

f3
Mean 2.38e+04$ 1.597e+04# 1.514e+04 5.526e+04$ 3.982e+04$ 3.197e+04
STD 6.20e+03 5.491e+03 6.494e+03 9.289e+03 8.724e+03 7.166e+03

f4
Mean 7.12e+02$ 6.772e+02$ 6.486e+02 7.362e+02$ 6.928e+02$ 6.615e+02
STD 4.08e+01 4.539e+01 4.386e+01 4.401e+01 4.322e+01 3.743e+01

f5
Mean 5.21e+02# 5.214e+02# 5.214e+02 5.214e+02# 5.214e+02# 5.214e+02
STD 2.06e-02 2.454e-02 2.078e-02 2.110e-02 2.813e-02 2.486e-02

f6
Mean 7.06e+02$ 6.550e+02$ 6.435e+02 6.982e+02$ 6.546e+02$ 6.479e+02
STD 2.22e+01 1.876e+01 8.719e+00 2.463e+01 1.548e+01 7.946e+00

f7
Mean 7.01e+02$ 7.003e+02$ 7.000e+02 7.013e+02$ 7.006e+02$ 7.001e+02
STD 7.11e-02 1.113e-01 2.320e-02 8.945e-02 1.652e-01 2.935e-02

f8
Mean 1.68e+03$ 1.660e+03∗ 1.646e+03 1.685e+03$ 1.666e+03# 1.665e+03
STD 2.24e+01 2.657e+01 3.722e+01 2.501e+01 2.977e+01 3.403e+01

f9
Mean 1.82e+03# 1.808e+03# 1.814e+03 1.829e+03# 1.820e+03# 1.818e+03
STD 2.48e+01 2.814e+01 2.715e+01 2.653e+01 2.940e+01 2.467e+01

f10
Mean 3.02e+04$ 3.003e+04$ 2.941e+04 3.023e+04$ 3.010e+04$ 2.939e+04
STD 6.60e+02 8.643e+02 7.485e+02 6.208e+02 6.889e+02 9.515e+02

f11
Mean 3.25e+04# 3.240e+04# 3.230e+04 3.233e+04# 3.238e+04# 3.237e+04
STD 5.60e+02 4.881e+02 5.196e+02 5.097e+02 5.734e+02 4.911e+02

f12
Mean 1.20e+03# 1.204e+03# 1.204e+03 1.204e+03# 1.204e+03# 1.204e+03
STD 2.78e-01 2.110e-01 3.496e-01 2.759e-01 3.102e-01 2.907e-01

f13
Mean 1.30e+03# 1.301e+03# 1.301e+03 1.301e+03# 1.301e+03# 1.301e+03
STD 6.98e-02 6.993e-02 6.251e-02 6.426e-02 6.944e-02 7.894e-02

f14
Mean 1.40e+03# 1.400e+03# 1.400e+03 1.400e+03# 1.400e+03# 1.400e+03
STD 1.48e-01 9.685e-02 1.451e-01 6.692e-02 1.0974e-01 2.054e-01

f15
Mean 1.59e+03$ 1.585e+03# 1.584e+03 1.590e+03$ 1.588e+03# 1.587e+03
STD 3.76e+00 3.647e+00 2.680e+00 4.292e+00 3.296e+00 3.543e+00

f16
Mean 1.65e+03# 1.647e+03# 1.647e+03 1.647e+03# 1.647e+03# 1.647e+03
STD 2.03e-01 2.348e-01 2.151e-01 2.666e-01 2.097e-01 2.125e-01

f17
Mean 2.39e+07$ 9.131e+06$ 4.644e+06 2.571e+07$ 1.055e+07$ 5.481e+06
STD 7.162e+06 2.602e+06 1.719e+06 7.117e+06 3.515e+06 2.122e+06

f18
Mean 5.110e+03# 4.470e+03# 4.400e+03 4.886e+03# 4.237e+03# 5.135e+03
STD 3.196e+03 2.749e+03 2.327e+03 2.906e+03 2.551e+03 3.258e+03

f19
Mean 2.002e+03# 2.000e+03∗ 2.001e+03 2.003e+03# 2.000e+03∗ 2.003e+03
STD 3.588e+00 7.358e+00 5.780e+00 9.440e+00 3.338e+00 6.039e+00

f20
Mean 4.920e+04$ 2.801e+04$ 1.544e+04 2.599e+04$ 1.742e+04$ 1.135e+04
STD 1.743e+04 1.189e+04 7.942e+03 1.075e+04 8.687e+03 6.528e+03

f21
Mean 4.301e+06$ 1.949e+06$ 1.229e+06 3.577e+06$ 1.636e+06$ 1.228e+06
STD 1.218e+06 9.975e+05 6.828e+05 1.496e+06 7.551e+05 6.386e+05

f22
Mean 6.841e+03$ 6.785e+03# 6.754e+03 6.793e+03# 6.770e+03# 6.826e+03
STD 2.248e+02 3.232e+02 2.445e+02 3.081e+02 2.307e+02 1.993e+02

f23
Mean 2.650e+03# 2.649e+03# 2.648e+03 2.650e+03# 2.649e+03# 2.649e+03
STD 7.264e-01 4.329e-01 2.214e-01 1.017e+00 6.452e-01 3.356e-01

f24
Mean 2.794e+03# 2.791e+03∗ 2.797e+03 2.796e+03# 2.795e+03$ 2.803e+03
STD 4.856e+00 5.336e+00 7.258e+00 5.763e+00 6.282e+00 7.540e+00

f25
Mean 2.851e+03$ 2.776e+03$ 2.738e+03 2.831e+03$ 2.764e+03$ 2.738e+03
STD 2.950e+01 1.957e+01 7.118e+00 2.846e+01 1.269e+01 4.955e+00

f26
Mean 2.837e+03# 2.855e+03# 2.842e+03 2.842e+03# 2.840e+03# 2.830e+03
STD 1.502e+02 1.129e+02 1.154e+02 1.343e+02 1.171e+02 1.026e+02

f27
Mean 4.543e+03$ 3.805e+03# 3.811e+03 4.439e+03$ 3.89e+03∗ 3.949e+03
STD 3.461e+02 1.598e+02 1.492e+02 2.495e+02 1.340e+02 1.306e+02

f28
Mean 5.938e+03$ 5.533e+03$ 5.388e+03 6.075e+03$ 5.553e+03# 5.711e+03
STD 4.705e+02 4.697e+02 4.638e+02 6.037e+02 4.441e+02 5.872e+02

f29
Mean 3.882e+07$ 1.816e+07∗ 3.233e+07 3.367e+07∗ 4.887e+07$ 4.057e+07
STD 4.505e+07 3.714e+07 4.629e+07 4.617e+07 5.305e+07 5.406e+07

f30
Mean 2.984e+04$ 1.659e+04$ 1.290e+04 2.643e+04$ 1.733e+04$ 1.303e+04
STD 6.902e+03 3.936e+03 1.816e+03 5.744e+03 6.171e+03 1.892e+03
w/t/l 18/12/0 12/14/4 - 16/13/1 14/14/2 -

2298

